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Frequency modulation atomic force microscopy utilizes the change in resonant frequency of a
cantilever to detect variations in the interaction force between cantilever tip and sample. While a
simple relation exists enabling the frequency shift to be determined for a given force law, the
required complementary inverse relation does not exist for arbitrary oscillation amplitudes of the
cantilever. In this letter we address this problem and present simple yet accurate formulas that
enable the interaction force and energy to be determined directly from the measured frequency shift.
These formulas are valid for any oscillation amplitude and interaction force, and are therefore of
widespread applicability in frequency modulation dynamic force spectroscopy. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1667267#

The extreme sensitivity of the atomic force microscope
~AFM! has led to its development and use in numerous ap-
plications. While the most familiar of these is imaging, con-
siderable effort has also been expended in making use of its
capabilities in quantitative measurement of forces on the na-
nometer and atomic scale.1,2 If performed with sufficient sen-
sitivity, such measurements can even distinguish variations
in potential energy with interatomic spacing. This in turn can
provide additional chemical sensitivity to topographic lateral
characterization of a surface on the atomic scale.

The use of AFM in such force measurements is com-
monly referred to asforce spectroscopy. These studies inher-
ently require a relation connecting the observed deflection
properties of the cantilever to the interaction force. Initially,
such measurements monitored the static deflection of the
cantilever as a function of tip–sample separation. The inter-
action force between tip and sample was subsequently deter-
mined using the spring constant of the cantilever.3 However,
when the interaction force gradient exceeds the cantilever
spring constant during the measurement of an attractive in-
teraction, a jump-into-contact instability occurs, often ren-
dering the most scientifically interesting part of the interac-
tion curve inaccessible experimentally. While use of stiffer
cantilevers can eliminate this problem, they have the unde-
sirable effect of reducing measurement sensitivity.

This sensitivity issue can be resolved using dynamic
methods, which facilitate highly sensitive force measure-
ments with stiff cantilevers. In dynamic force microscopy, a
vibrating cantilever is used to sense forces between the can-
tilever tip and sample. In one mode of operation, commonly
termed frequency modulation atomic force microscopy
~FMAFM!,4 a feedback circuit self-excites the cantilever at
its resonant frequency. In this manner, minute changes in the
resonant frequency are easily detected with high sensitivity.
Since the resonant frequency of the cantilever is modified by
changes in the force interaction between cantilever tip and

sample, this then enables use of the technique in a range of
applications, which include high resolution imaging5 and
force spectroscopy.6

In contrast to the simple relation connecting the static
deflection of a cantilever to the interaction force, the corre-
sponding relation for FMAFM is significantly more complex
and depends on both the spring constant and amplitude of
oscillation. This relation was first derived by Giessibl,7 and is
valid for any amplitude of oscillation:
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where k is the spring constant of the cantilever,F is the
interaction force between tip and sample,v res is its unper-
turbed resonant frequency,Dv is the change in resonant fre-
quency,a is the amplitude of oscillation, andz is the distance
of closest approach between tip and sample.

To determine the interaction force from the observed fre-
quency shift, Eq.~1! must be inverted. While inversion of
Eq. ~1! for arbitrary amplitudes has proven elusive, it has
been performed analytically for cases where the amplitude of
oscillation is far smaller or greater than all characteristic
length scales of the interaction force.4,8 However, use of
these limiting formulas in practice can potentially lead to
significant errors, unless the precise nature of the force is
known. This is particularly problematic if the interaction
force contains a spectrum of length scales, encompassing
short to long-range components, as is often the case. In such
situations, it is possible that the oscillation amplitude may be
considered small with respect to long-range components, but
large for short-range components. Accurate determination of
the interaction force may therefore not be possible using
these limiting formulas. Consequently, inversion formulas or
techniques that are valid for all oscillation amplitudes are
highly desirable, since they permit unequivocal determina-
tion of the force, regardless of its nature.

At this stage, we note that various numerical schemes
have been formulated to invert Eq.~1! for arbitrary ampli-
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tudes of oscillation. Specifically, one technique9 iterates on
the large amplitude solution until convergence is obtained,
while another10 numerically inverts Eq.~1! using a quadra-
ture scheme. While both methods are mathematically
straightforward, they exhibit significant complexity and re-
quire specialized computational skills for their implementa-
tion, which limits their utility. The aim of this letter is there-
fore to address this issue by presenting simple yet accurate
analytical formulas that enable direct determination of the
interaction force and energy from the measured frequency
shift. These formulas are valid for any amplitude of oscilla-
tion, exhibit similar complexity to the small and large ampli-
tude formulas, and are applicable to any force law. Impor-
tantly, we only consider the case where the amplitude of
oscillation is kept constant and independent of the tip–
sample separationz.

To begin, we formally express the interaction forceF(z)
as

F~z!5E
0

`

A~l!exp~2lz!dl, ~2!

whereA(l) is the inverse Laplace transform ofF(z). Sub-
stituting Eq.~2! into Eq. ~1!, we then obtain
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whereT(x)5I 1(x)exp(2x), andI n(x) is the modified Bessel
function of the first kind of ordern.11 Therefore, in Laplace
space the force and frequency shift only differ by the func-
tion T(x). This finding enables Eq.~1! to be inverted exactly,
thus defining the force explicitly in terms of the inverse
Laplace transform of the frequency shift:
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where the operatorsL$ % andL21$ % refer to the Laplace and
inverse Laplace transforms, respectively,
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wherec is a real constant. While Eq.~4! rigorously inverts
Eq. ~1!, it is of limited practical value due to difficulties in
computing the inverse Laplace transform numerically.

To overcome this problem, we replaceT(x) by an
equivalent approximate formula which facilitates evaluation
of Eq. ~4!. Noting thatT(x) has the asymptotic properties,
T(x)5x/2, x!1 and T(x)51/A2px, x@1, then enables
the construction of a Pade approximant representation for
T(x)
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which satisfies the above asymptotic behavior exactly, and
gives an excellent representation ofT(x) for all other values
of x; the error exhibited by Eq.~6! is less than 5% for all
values ofx. The second term in the denominator of Eq.~6! is

a higher order correction which is obtained empirically using
a least-squares fitting procedure, and is used to improve the
accuracy of the approximation.

Next, we invoke the properties of the Riemann–
Liouville fractional integral12 of ordera of a functionw~l!,
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and the corresponding fractional derivative
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whereG~a! is the gamma function,a.0 is any real positive
number, andn5@a#11, where@a# is the integer component
of a.

From Eqs.~5! and ~7! it is then easy to prove that
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Substituting Eq.~6! into Eq. ~4! and using Eq.~8!, we then
obtain the required explicit expression for the force in terms
of the frequency shift
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whereV(z)5Dv(z)/v res.
Integrating Eq.~9!, and using the definitions in Eq.~7!,

then gives the corresponding expression for the interaction
energyU(z) between tip and sample

FIG. 1. Actual~solid line! and recovered~dashed line! Lennard-Jones force
laws using~a! small amplitude formula@Eq. ~11a!#; ~b! large amplitude
formula@Eq. ~11b!#; ~c! arbitrary amplitude formula@Eq. ~9!#. Amplitudes of
oscillation useda/,50.1, 0.3, 1, 3, and 10.
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Equations~9! and~10! are the formulas which enable the
interaction force and energy to be determined explicitly from
the measured frequency shift, irrespective of the amplitude
of oscillation. We emphasize that the accuracy of these for-
mulas is dictated only by that of Eq.~6!, and is therefore
expected to be excellent.

To assess the accuracy and validity of these formulas, we
present a simulated experiment for a specified force law.
Namely, we use Eq.~1! to determine the frequency shift
versus distance curve for a range of different oscillation am-
plitudes. We then use Eqs.~9! and ~10! to recover the force
~energy! law from the specified frequency shift. The validity
of the formulas can then be directly assessed by comparing
the actual and recovered force laws. For completeness, we
also present a comparison with the limiting expressions for
small and large amplitudes, which are given by the following
respective formulas:4,8
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It is important to note that in the limiting cases of small and
large amplitude, Eq.~9! yields the exact solution, cf. Eqs.~9!
and~11!; this is expected since the approximation toT(x) is
exact in these limits. From this observation it also follows
that an excellent approximation for all amplitudes is obtained
by summing the above small and large amplitude solutions,
since the term ofO(a1/2) in Eq. ~9! is a higher order correc-
tion; it results from the second term in the denominator of
Eq. ~6!. We note, however, that little additional effort is re-
quired to implement Eq.~9! in full. The same discussion also
applies to the expression for the interaction energy,@Eq.
~10!#.

To perform the required comparison, a Lennard-Jones
force law, consisting of short-range repulsive and long-range
attractive interaction, is chosen9

F~z!5F0S ,4
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1

z2D , ~12!

where F0 is a constant, and, is the separation where the
attractive force is maximum. This separation therefore sets a
natural length scale for the interaction.

We now present a comparison of the specified and re-
covered force laws using Eqs.~9! and~11!, for a spectrum of
oscillation amplitudes ranging froma/,50.1 to a/,510,
which encompass the small and large amplitude regimes. In
Fig. 1~a!, a comparison is given of the recovered and actual
force curves using the small amplitude formula@Eq. ~11a!#.
From Fig. 1~a! it is clear that the small amplitude formula
yields significant inaccuracies, even for the case ofa/,
50.1, while the results obtained using this formula for inter-
mediate to large amplitudes are not even in qualitative agree-
ment with the actual force law. This demonstrates that even
for small amplitudes, Eq.~11a! must be used with care since

it can lead to significant inaccuracies. In Fig. 1~b! we present
a complementary comparison using the large amplitude for-
mula@Eq. ~11b!#. For the case ofa/,510, good agreement is
found between the recovered and actual force laws. As ex-
pected, however, this agreement deteriorates with decreasing
amplitude and for intermediate to small amplitudes qualita-
tive discrepancies exist. Consequently, these results verify
that the small and large amplitude formulas give poor agree-
ment for intermediate amplitudes, and can exhibit qualitative
discrepancies when used outside their respective regimes of
validity.

The results in Figs. 1~a! and 1~b! are to be compared to
the results obtained using Eq.~9!, which is derived explicitly
for arbitrary amplitudes, the results of which are given in
Fig. 1~c!. From Fig. 1~c!, it is evident that the recovered
force laws are virtually independent of the oscillation ampli-
tude, with all force curves almost coinciding with the actual
force law. The only discrepancies visible are for the
midrange oscillation amplitudes ofa/,;0.3, particularly
near the minimum in the force law. At this point the error is
less than 5%, which is in line with the accuracy of the ap-
proximate expression forT(x). We note that similar results
are obtained for the interaction energy, and hence not repro-
duced here. Consequently, these results verify the accuracy
of Eqs. ~9! and ~10!, and establish their global validity for
arbitrary oscillation amplitudes.

In summary, we have presented simple yet accurate for-
mulas @Eqs. ~9! and ~10!#, for determining the interaction
force and energy in dynamic force spectroscopy. These for-
mulas are valid irrespective of the amplitude of oscillation
used, and the nature of the force measured. Consequently,
they allow for easy and unequivocal determination of force
and energy curves from measured frequency shift data using
FMAFM.
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